Characteristics of glutamine metabolism in human precision-cut kidney slices: a 13C-NMR study.
نویسندگان
چکیده
The metabolism of glutamine, a physiological substrate of the human kidney, plays a major role in systemic acid-base homoeostasis. Not only because of the limited availability of human renal tissue but also in part due to the lack of adequate cellular models, the mechanisms regulating the renal metabolism of this amino acid in humans have been poorly characterized. Therefore given the renewed interest in their use, human precision-cut renal cortical slices were incubated in Krebs-Henseleit medium (118 mM NaCl, 4.7 mM KCl, 1.18 mM KH2PO4, 1.18 mM MgSO4*7H2O, 24.9 mM NaHCO3 and 2.5 mM CaCl2*2H2O) with 2 mM unlabelled or 13C-labelled glutamine residues. After incubation, substrate utilization and product formation were measured by enzymatic and NMR spectroscopic methods. Glutamate accumulation tended to plateau but glutamine removal and ammonia, alanine and lactate production as well as flux through GLDH (glutamate dehydrogenase) increased to various extents with time for up to 4 h of incubation indicating the metabolic viability of the slices. Valproate, a stimulator of renal glutamine metabolism, markedly and in a dose-dependent fashion increased ammonia production. With [3-13C]glutamine as a substrate, and in the absence and presence of valproate, [13C]glutamate, [13C]alanine and [13C]lactate accounted for 81 and 96%, 34 and 63%, 30 and 46% of the glutamate, alanine and lactate accumulations measured enzymatically respectively. The slices also metabolized glutamine and retained their reactivity to valproate during incubations lasting for up to 48 h. These results demonstrate that, although endogenous metabolism substantially operates in the presence of glutamine, human precision-cut renal cortical slices are metabolically viable and strongly respond to the ammoniagenic effect of valproate. Thus, this experimental model is suitable for metabolic and pharmaco-toxicological studies.
منابع مشابه
Protective effects of phenolic acids on mercury-induced DNA damage in precision-cut kidney slices
Objective(s): Precision-cut tissue slices are considered an organotypic 3D model widely used in biomedical research. The comet assay is an important screening test for early genotoxicity risk assessment that is mainly applied on in vitro models. The aim of the present study was to provide a 3D organ system for determination of genotoxicity using a modified method of the comet assay since the s...
متن کاملImpaired Hippocampal Glutamate and Glutamine Metabolism in the db/db Mouse Model of Type 2 Diabetes Mellitus
Type 2 diabetes mellitus (T2DM) is a risk factor for the development of Alzheimer's disease, and changes in brain energy metabolism have been suggested as a causative mechanism. The aim of this study was to investigate the cerebral metabolism of the important amino acids glutamate and glutamine in the db/db mouse model of T2DM. Glutamate and glutamine are both substrates for mitochondrial oxida...
متن کاملComplexity of glutamine metabolism in kidney tubules from fed and fasted rats.
Glutamine is an important renal glucose precursor and energy provider. In order to advance our understanding of the underlying metabolic processes, we studied the metabolism of variously labelled [13C]glutamine and [14C]glutamine molecules and the effects of fasting in isolated rat renal proximal tubules. Absolute fluxes through the enzymes involved, including enzymes of four different cycles o...
متن کاملThe rabbit kidney tubule utilizes glucose for glutamine synthesis. A 13C NMR study.
The metabolism of variously labeled [13C]- and [14C]glucoses, used at a physiological concentration (5 mM), has been studied in isolated rabbit kidney tubules both in the absence and the presence of NH4Cl. When present as sole exogenous substrate, glucose was metabolized at high rates and converted not only into CO2 and lactate but also, in contrast to a previous conclusion of Krebs (Krebs, H.A...
متن کاملCryopreservation of rat precision-cut liver and kidney slices by rapid freezing and vitrification.
Precision-cut tissue slices of both hepatic and extra-hepatic origin are extensively used as an in vitro model to predict in vivo drug metabolism and toxicity. Cryopreservation would greatly facilitate their use. In the present study, we aimed to improve (1) rapid freezing and warming (200 degrees C/min) using 18% Me(2)SO as cryoprotectant and (2) vitrification with high molarity mixtures of cr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 387 Pt 3 شماره
صفحات -
تاریخ انتشار 2005